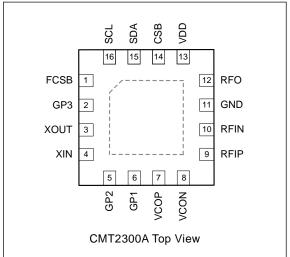
## Ultra Low Power 300 – 960 MHz Transceiver

#### **Features**

- Optional Configuration Schemes
  - · On-Line Configuration by Registers Writing
  - · Off-Line Configuration by EEPROM Programming
- Frequency Range: 300 to 960 MHz
- Support OOK, (G)FSK and (G)MSK Modulation
- Data Rate: 0.1 to 100 kbps
- Sensitivity: -120 dBm at 1 kbps, 0.1% BER, F<sub>RF</sub> = 434 MHz
- Output Power: -10 dBm to +13 dBm
- 4-wire SPI Interface
- Direct, Buffer and Packet Mode Supported
- Configurable Data Handler and 64 Bytes FIFO
- Manchester Decoding and Data De-Whitening
- Supply Voltage: 1.8 to 3.6 V
- Ultra Low Receive Power Consumption: 4.2 mA
- Ultra Low Sleep Current
  - · 60 nA when Sleep Timer Off
  - 440 nA when Sleep Timer On
- RoHS Compliant
- 16-pin QFN 3x3 Package

### **Descriptions**

The CMT2300A is an ultra low power, high performance, OOK, FSK, MSK, GFSK and GMSK transceiver for various 300 to 960 MHz wireless applications. It is part of the CMOSTEK NextGenRFTM family, which includes a complete line of transmitters, receivers and transceivers. The user can configure the chip features either through off-line EEPROM programming or on-line registers writing. The configuration file to be written into the registers could be produced by the CMOSTEK smart RFPDK. The CMT2300A operates from a supply voltage of 1.8 V to 3.6 V. It consumes only 4.2 mA current while achieving -120 dBm receiving sensitivity and consumes only 60 nA in sleep state, which makes it an ideal solution for battery powered application. The device supports packet handling, 64-byte FIFO, Manchester decoding and data de-whitening for the received data processing. Besides the demodulated data, the device provides 2 configurable interrupts, the sync clock, the power-on reset as well as the system clock for an external device. The CMT2300A can meet worldwide regulatory standards: ARIB, ETSI, and FCC.


### **Applications**

- Low-power Consumer Electronics Applications
- Home and Building Automation
- Infrared Receiver Replacements
- Industrial Monitoring and Controls
- Remote Automated Meter Reading
- Remote Lighting Control System
- Wireless Alarm and Security Systems
- Remote Keyless Entry (RKE)

#### **Ordering Information**

| Part Number  | Frequency  | Package | MOQ       |
|--------------|------------|---------|-----------|
| CMT2300A-EQR | 868.00 MHz | QFN16   | 5,000 pcs |





# 1. Pin Descriptions

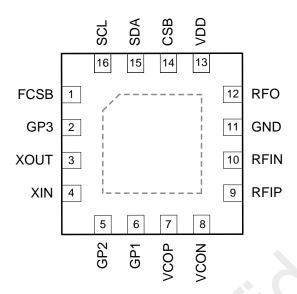



Figure 1. CMT2300A Pin Assignments

**Table 1. CMT2300A Pin Descriptions** 

| Pin Number | Name | I/O | Descriptions                                                                                                          |  |
|------------|------|-----|-----------------------------------------------------------------------------------------------------------------------|--|
| 1          | FCSB | I   | 4-wire SPI FIFO select input, active low, internally pulled high. Leave floating when programming the embedded EEPROM |  |
| 2          | GP3  | 0   | General purpose output. Options are: CLKO (Default), INT1, INT2 and DCLK                                              |  |
| 3          | XOUT | 0   | Crystal oscillator output                                                                                             |  |
| 4          | XIN  | 1   | Crystal oscillator input or external reference clock input                                                            |  |
| 5          | GP2  | 10  | General purpose input or output. Options are: INT1 (Default), INT2, DCLK and DOUT/DIN                                 |  |
| 6          | GP1  | 10  | General purpose input or output. Options are: DOUT(Default)/DIN, INT1, INT2 and DCLK                                  |  |
| 7          | VCOP | 10  | VOO tools are restalled as a set of all industrial                                                                    |  |
| 8          | VCON | Ю   | VCO tank, connected to an external inductor                                                                           |  |
| 9          | RFIP |     | Differential RF signal input to the LNA. Connect RFIP to ground if single-ended RF input is needed                    |  |
| 10         | RFIN | I   |                                                                                                                       |  |
| 11         | GND  | I   | Ground                                                                                                                |  |
| 12         | RFO  | 0   | Power amplifier output                                                                                                |  |
| 13         | VDD  | I   | Power supply input                                                                                                    |  |
| 14         | CSB  | I   | 4-wire SPI chip select input, active low, internally pulled high                                                      |  |
| 15         | SDA  | 10  | 4-wire SPI data input and output                                                                                      |  |
| 16         | SCL  | I   | 4-wire SPI clock input, internally pulled low                                                                         |  |

# 2. Typical Application Schematic

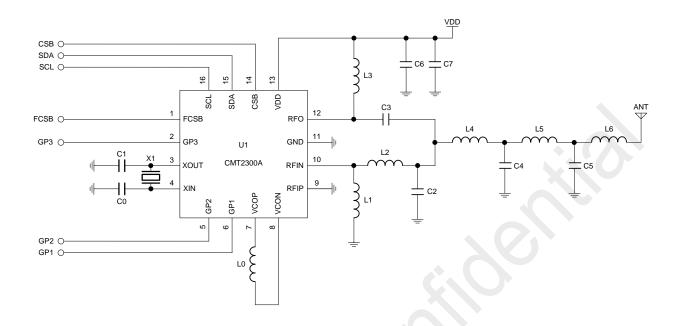



Figure 2. Typical Application Schematic - Single-ended RF Input Application

**Table 2. BOM of Typical Application** 

| Danimatas  | December 1                                             | Value   |         | 11   | Manufactur   |
|------------|--------------------------------------------------------|---------|---------|------|--------------|
| Designator | Descriptions                                           | 434 MHz | 868 MHz | Unit | Manufacturer |
| U1         | CMT2300A, ultra low power 300 – 960<br>MHz transceiver | -       |         | -    | CMOSTEK      |
| L0         | ±5%, 0603 multi-layer chip inductor                    | 22 3.9  |         | nH   | Murata LQG18 |
| L1         | ±5%, 0603 multi-layer chip inductor                    | 56      | 6.8     | nΗ   | Murata LQG18 |
| L2         | ±5%, 0603 multi-layer chip inductor                    | 56      | 22      | nΗ   | Murata LQG18 |
| L3         | ±5%, 0603 multi-layer chip inductor                    | 180     | 120     | nΗ   | Murata LQG18 |
| L4         | ±5%, 0603 multi-layer chip inductor                    | 56      | 12      | nΗ   | Murata LQG18 |
| L5         | ±5%, 0603 multi-layer chip inductor                    | 82      | 22      | nH   | Murata LQG18 |
| L6         | ±5%, 0603 multi-layer chip inductor                    | 51      | 18      | nΗ   | Murata LQG18 |
| C0, C1     | ±0.25 pF, 0402 NP0, 50 V                               | 15      | 15      | pF   | Murata GRM15 |
| C2         | ±0.25 pF, 0402 NP0, 50 V                               | 2.2     | 1.5     | pF   | Murata GRM15 |
| С3         | ±0.25 pF, 0402 NP0, 50 V                               | 8.2     | 15      | pF   | Murata GRM15 |
| C4         | ±0.25 pF, 0402 NP0, 50 V                               | 3.9     | 3.9     | pF   | Murata GRM15 |
| C5         | ±0.25 pF, 0402 NP0, 50 V                               | 3.3     | 2.2     | pF   | Murata GRM15 |
| C6         | ±0.25 pF, 0402 NP0, 50 V                               | 470     |         | pF   | Murata GRM15 |
| C7         | ±20%, 0402 X7R, 25 V                                   | 0.1     |         | uF   | Murata GRM15 |
| X1         | ±20 ppm, SMD32*25 mm, crystal                          | 26      |         | MHz  | EPSON        |

## 3. Package Outline

The 16-pin QFN 3x3 illustrates the package details for the CMT2300A. The table below lists the values for the dimensions shown in the illustration.

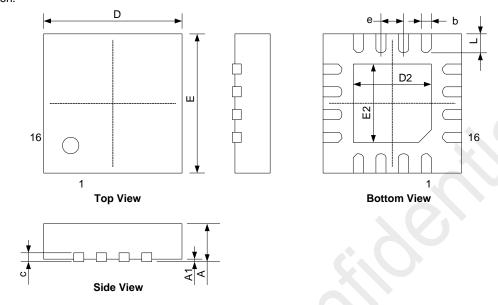



Figure 3. 16-Pin QFN 3x3 Package

Table 3. 16-Pin QFN 3x3 Package Dimensions

| 0      | Size (millimeters) |      |  |
|--------|--------------------|------|--|
| Symbol | Min                | Max  |  |
| А      | 0.7                | 0.8  |  |
| A1     | _                  | 0.05 |  |
| b      | 0.18               | 0.30 |  |
| С      | 0.18               | 0.25 |  |
| D      | 2.90               | 3.10 |  |
| D2     | 1.55               | 1.75 |  |
| е      | 0.50 BSC           |      |  |
| E      | 2.90               | 3.10 |  |
| E2     | 1.55               | 1.75 |  |
| L      | 0.35               | 0.45 |  |

#### 4. Contact Information

CMOSTEK Microelectronics Co., Ltd.

Room 202, Honghai Building, Qianhai Road. Nanshan District

Shenzhen, Guangdong, China PRC

Zip Code: 518000
Tel: 0755 - 83235017
Fax: 0755 - 82761326
Sales: sales@cmostek.com

Technical support: <a href="mailto:support@cmostek.com">support@cmostek.com</a>

www.cmostek.com

#### Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.